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ABSTRACT 
 To detect the singular points of signal from measured data, we turned to curve shortening and derived the 

partial differential equations that characterize the evolution of curvature. Then we proceed to project measured data 

into the wavelet domain and suppress wavelet coefficients by this multiscale curvature mask. For a piecewise smooth 

signal, it was shown that filtering by this curvature mask is equivalent to keeping the signal pointwise exponents at 

the singular points of the underlying signal, and to lifting its smoothness at all the remaining points. 
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I. INTRODUCTION 
 To increase the number of vanishing 

moments and the regularity, we use a dual lifting 

which modifies hand. The corresponding lifting 

formula with a filter are obtained by switching in the 

resulting family of biorthogonal scaling functions and 

wavelets can be constructed in the similar way. 

Successive iteration of lifting and dual lifting can 

improve the regularity and vanishing. By increasing 

the order of zeros a moments of both block diagram of 

biorthogonal filter banks with a lifting and a dual 

lifting is given [1-3]. Their Fourier transforms are the 

resulting filter bank just separate the even and odd 

samples of a signal without filtering. The lazy scaling 

functions and wavelets associated with these filters are 

apparently they do not belong. These wavelets can be 

transformed into finite energy functions by 

appropriate lifting’s. A lifting of a lazy filter yields to 

produce a symmetric wavelet must be even.  It can be 

verified that the shortest that lifts lazy wavelet to have 

vanishing moments is defined [4-5]. The result is the 

Deslauriers-Dubuc interpolating scaling function. 

Both of them are continuously differentiable are still 

sums of Dirac’s.  A dual lifting can transform them 

into finite energy functions by creating a dual lifted 

filter with one or more zeros. Any biorthogonal filters 

can be synthesized with a succession of lifting and 

dual lifting applied to the lazy filters defined, up to 

shifting and multiplicative constants [7].  To any 

orthonormal wavelet basis of one can associate a 

separable orthonormal basis, the functions mix 

information at two different scales along, which we 

often want to avoid. Separable multiresolution leads to 

another construction of separable wavelet bases whose 

elements are products of one dimensional scaling 

functions and wavelets dilated at the same scale. These 

multiresolution  

 

Approximations also have important 

applications in computer vision, where they are used 

to process images at different level of details. Lower 

resolution images are represented by fewer pixels and 

might still carry enough information to perform a 

recognition tasks. A separable two-dimensional 

multiresolution is composed of the tensor product 

spaces Theory  shows the existence of a scaling 

function such that  is an orthonormal basis of  By the 

classical theory of functional analysis, one can proves 

that for an orthonormal basis of It is obtained by 

scaling the separable scaling function and translating 

it onto a two dimensional grid with interval be the 

detail space equal to the orthogonal complement of the 

lower resolution approximation space, To construct a 

wavelet orthonormal basis, the following theory builds  

wavelet basis of each detail space. Scaling function 

and the corresponding wavelet generating a wavelet 

orthonormal basis. We define three wavelets: and 

denote for the three wavelets extract image details at 

different scales and orientations. Over positive 

frequencies, have an energy mainly concentrated 

respectively on lower and higher frequencies. the 

separable wavelet expressions implies Hence  is larger 

at low horizontal frequencies and high vertical 

frequencies is larger at high horizontal frequencies and 

low vertical frequencies As a result, wavelet 

coefficients calculated along edges which are 

respectively horizontal and vertical, and produces 

large coefficients at the corners. This is illustrated by 

the decomposition of a toolbox image. In  the  similar  

fashion,  one-dimensional  biorthogonal  wavelet  

bases  can  also  be  extended to separable biorthogonal 

bases. Two dual pairs of scaling functions and 

wavelets that generate biorthogonal wavelet bases. 
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II. METHODS AND MATERIALS 
 The dual wavelets of are easy to verify that 

are biorthogonal bases. It is possible to extend the fast 

one-dimensional wavelet transform algorithm to two 

dimensions.  At all the scales of and for any, we denote 

for any pair of one-dimensional filters, we write the 

product filter and denote. The wavelet coefficients at 

the scale are calculated with two dimensional 

separable convolutions and subsampling associated to 

the wavelet. The decomposition formula are obtained 

by applying the one-dimensional convolutional 

formula to the separable two-dimensional wavelets 

and scaling functions. A separable two dimensional 

convolution can be factored into one-  

 
Figure 1 data fusion in 2 dimensional multi space 

processing 

Dimensional convolutions along with rows 

and columns of the images.  The factorization is 

illustrated are first convolved with, and subsampled  

The rows of   The columns of these two output images 

are then convolved respectively with hand and 

subsampled, which gives four subsampled images. We 

denote the image obtained by inserting a row of zeros 

and a column of zeros between pairs of consecutive 

rows and columns is recovered from the coarser scale 

approximation and the wavelet coefficients and a two-

dimensional fast wavelet transform is computed with 

a cascade followed by a factor subsampling in rows 

and columns respectively. Figure 1 data fusion in 2 

dimensional multi space processing is plotted. A two-

dimensional fast inverse wavelet transform 

reconstructs progressively each by inserting zeros 

between samples of filtering and adding the outputs 

along with rows and columns. Two-dimensional 

separable convolutions derived from the one-

dimensional reconstruction formula these four 

convolutions can also be factored into six groups of 

one-dimensional convolutions along rows and 

columns. The wavelet image representation of A is 

computed, the original image A is recovered from this 

wavelet representation by iterating the re-construction. 

We consider the problem of signal estimation in an 

additive noise model. A signal of support size is 

contaminated by the addition of a noise.  This noise is 

modeled by the realization of a zero mean random 

process.  The measured data and The signal is 

estimated by transforming the noisy observation with 

a decision operator which is given by A statistical 

approach usually assumes the knowledge of at least 

the probability distribution of the noise process. Figure 

2 biorthogonal two-dimensional wavelet transform... 

An optimal then minimize the risk of the estimator, 

which is the average loss calculated with respect to the 

probability distribution of noise Linear operators have 

long predominated the solution to this problem 

because of their simplicity, despite their limited 

performance. The Bayes framework supposes that 

signals are realizations of a random vector whose 

probability distribution is a known prior.  The Bayes 

risk is the expected risk calculated with respect to the 

prior probability distribution of the signal the Bayes 

estimation is to optimize to inimize the expected risk. 

It is,  however,  generally  not  possible  to  have  

enough  information  to  define  this  prior probability  

distribution  for  a  signal  set  with  a  complex  

structure. To overcome this difficulty, one may call 

upon a minimax framework that applies a simpler 

model which constrains signals in a prior set.  

 
Figure 2 A fast biorthogonal two-dimensional wavelet 

transform 

III. RESULTS 
 The goal is to then find an optimal operator 

which minimizes the maximum risk over. Where the 

maximum risk is given by Except for a few special 

cases, minimax optimal operators are highly nonlinear 
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and difficult to find for real world applications.  More 

often than not, one settles for a suboptimal estimator.    

This section studies particular estimators that are 

diagonal in an orthonormal basis. If the basis defines a 

sparse signal representation, then such diagonal 

estimators are nearly optimal among all nonlinear 

estimators. The noise coefficient is hence also a white 

noise of variance. The resulting estimator is setting, 

we can write where depends on. The estimation risk in 

practice, the attenuation factor cannot be computed 

since it depends, whose value is not known. An oracle 

attenuation. The analysis of diagonal estimators can be 

simplified by restricting. A non-linear projector that 

minimizes the risk. Similar to the case, this projector 

cannot be implemented because depends on the value 

of the risk of this oracle projector is computed with 

One can use the risk in to verify the performance of 

practical thresholding estimators. Instead of 

depending on a feasible approach is to use to 

determine an appropriate projection. A diagonal 

estimator can be written as n oracle attenuation yields 

a risk that is smaller than the risk of an oracle 

projection, by slightly decreasing the amplitude for all 

coefficients in order to reduce the added noise.   A 

similar attenuation, although non-optimal, is 

implemented by a soft thresholding, which decreases 

by the amplitude of all noisy coefficients. This soft 

thresholding function is given by It is the solution that 

minimizes a quadratic distance to the data, penalized 

by an It is the solution that minimizes a quadratic 

distance to the data, penalized by a norm. Given the 

data, the vector which minimizes. The threshold is 

generally chosen so that it is just above almost all the 

noise coefficients. Figure 3 Multi-sensor image fusion 

sensor image & a forward looking infrared image. 

Since vector of independent Gaussian random 

variables of variance. By taking one can show that the 

theorem proves that the risk of a thresholding 

estimator is close to the risk of an oracle projector 

defined. A filter bank tree of depth decomposes a 

discrete signal in a discrete wavelet basis defined. An 

orthonormal basis a wavelet thresholding estimator 

can be written is a hard or soft thresholding function.  

In a wavelet signal representation, large amplitude 

coefficients correspond to transient signal variations, 

this means that the thresholding estimation only keeps 

transients coming from the underlying signal, without 

adding others due to the noise. The threshold is not 

optimal and in general a lower threshold reduces the 

risk. A threshold adapted to the data is calculated by 

minimizing an estimation of the risk.  Denote the risk 

of a soft thresholding estimator calculated with a 

threshold. An estimate is calculated from the noisy 

data, is optimized by minimizing. To estimate the risk, 

observe that if then the soft thresholding sets this 

coefficient to zero, which produces a risk equal. Since 

one can estimate. The soft thresholding subtracts from 

the amplitude of. The expected risk is the sum of the 

noise energy plus the bias introduced by the reduction 

of the amplitude. It is estimated by. The resulting 

estimator.  

 
Figure 3 image fusion for enhancing image quality. 

 

IV. CONCLUSION 
 In this paper an Algorithms for pre-

processing step of the shapes extracted from images is 

proposed, a novel non-linear smoothness-constrained 

filtering technique. The key idea is to separate the 

signal portion from its measured data, and to preserve 

the original smoothness property of the underlying 

shape. Using notations of spaces and exponent, we 

establish results of signal regularity measurement with 

wavelets. A new singularity detection method by 

tracking the curvature extrema across scales is 

proposed and a multiscale curvature mask is 

generated. The simulation results show that the 

presented method is fantastic one among traditional 

methods.  
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